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Abstract

Deep neural networks, as highly non-linear end-to-end
models, still struggle to recognize compositional attribute-
object pairs in a zero-shot manner. State-of-the-art meth-
ods leverage pre-trained language models to generate re-
gression targets so that the embeddings are better anchored
in the feature space. However, we note that current text
encoder outputs are not regularized and thus may lose
the rich structure. To this end, we introduce pronouns so
that regression targets are augmented from adjectives (e.g.,
running) to adjective-pronoun pairs (e.g., running some-
thing). Meanwhile, we design a first-in-first-out memory
bank for every and each attribute/object, which intrinsically
regularizes the regression target. We evaluate our frame-
work on three large-scale datasets: MIT-States, UT-Zappos,
and VAW-CZSL, demonstrating clear improvements. Codes,
data, and models will be made publicly available.

1. Introduction

Closed-set visual recognition [38] has seen large
progress since the advent of deep learning. However, deep
neural networks, which are highly nonlinear due to a large
stack of non-linearly activated modules, may learn spuri-
ous correlations that lead to confident wrong predictions
on certain samples [19]. This limitation is better shown by
its limited success in the zero-shot compositional attribute-
object understanding setting. As shown in Fig. 1, if two
images of running cat and running dog are pre-
sented to a deep neural network, it might learn the pat-
tern of four-leg animals in the air for the con-
cept running. If this spurious correlation is established
through an uninterpretable nonlinear mapping, recognizing
brand new composition (e.g. running man) in the zero-
shot setting becomes challenging.

So a recent state-of-the-art method [39] proposes to
leverage the rich semantic structure hidden in the large-
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Figure 1. Left: Existing methods generate the text attribute, object
and pair embeddings by utilizing multiple sub-networks (e.g. of
running with a text attribute encoder). An attribute extraction
module generates image attribute embedding of running from
two images. Right: Our proposed method regularizes the output
from the text embedding. We use a text encoder to generate the
pair embedding like running cat and maintain a memory bank
to output text attribute embedding running something.

scale pre-trained language models. As shown in the left
panel of Fig. 1, the text encoder generates the regression
target for running. An attribute extraction module would
produce an image attribute embedding from those two im-
ages. Enforcing the text and image embeddings to be closer
facilitates zero-shot recognition as one can input newly
composed texts (e.g. running man) into the text encoder
during test time.

However, we identify a limitation of this existing
paradigm: because both text and image encoders are op-
timized during training, the rich structure of the pre-trained
language model may be broken after convergence. In other
words, the outputs of text encoders are not regularized. To
this end, we propose the idea of Pronoun Memory Bank
or PMB. Specifically, the text inputs are augmented from
running to running cat/dog. We maintain a mem-
ory bank that corresponds to the text features of all seen
pairs of running something. A temporally averaged
version of this running something text feature bank
functions as the regression target in our method. As in
other memory-based methods like MoCo [7] or mean teach-
ers [41], our PMB imposes regularization to the regression
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target so that better scalability can be achieved. Although
not shown in Fig. 1, object regression targets (e.g. cat)
are also generated by the average of a queue someadj.
cat in the memory bank consisting of the text features of
running cat, sleeping cat and others.

To summarize, we have the following contributions:

• We propose a new framework named pronoun memory
bank or PMB for zero-shot compositional attribute-
object understanding. First-in-first-out memory banks
generate averaged regression targets for each attribute
or object, as an effective regularization.

• We evaluate our PMB method on public benchmarks
MIT-States, UT-Zappos, and VAW-CZSL and achieve
state-of-the-art results with a great margin. Codes,
data, and models will be released.

2. Related Work
Visual Attribute. Visual attributes have been widely used
in understanding visual properties of objects. As a middle-
level concepts, visual attributes is used to describe objects
[39], human faces [22], scenes [30, 37], human activities
[30], which benefit many downstream tasks of computer vi-
sion, such as recognition [5], image retrieval [47], semantic
representation [48].

Attribute-augmented semantic hierarchy bridges gap be-
tween semantics and intention retrieval [47], therefore, vi-
sual attribute is regarded as cue to discover and model the
intra-concept visual variance for learning extensive mod-
els within any concept [5]. Parikh et al. [29] firstly model
relative attributes to learn a ranking function for each at-
tribute that indicates the relative strength of the attribute
presence in them. Following the formulation, a set of rank-
ing functions are learned to facilitate the interactive image
search [14]. In order to recognize unseen objects, Nagarajan
et al. [27] model attributes as operators to learn a semantic
embedding that explicitly factors out attributes from their
accompanying objects.

For attribute research, a variety of datasets are devel-
oped. Patterson et al. [32] discover and annotate visual at-
tributes for the COCO dataset for deeper object understand-
ing. Transient attribute database [15] is created for high-
level understanding and editing. SUN Attribute Database
[31] is the first large-scale scene attribute database. Pham
et al. [34] introduce a in-the-wild visual attribute prediction
dataset, and describe a multitude of attributes which por-
tray their visual appearance, geometry, and other intrinsic
properties.
Zero-shot Learning. Given high-level semantically mean-
ingful attributes [3] and textual descriptions [17] of seen
object classes, Zero-shot Learning (ZSL) aims to complete
relevant downstream tasks including recognition and visual

search, etc. With ideas from manifold learning, Changpinyo
et al. [2] introduce a set of “phantom” object classes to align
the semantic space to the model space that concerns itself
with recognizing visual features. Natural language offers a
general and flexible interface for describing objects in vi-
sual attribute space, so vision and language are combined
in ZSL [28] to represent object and attribute as linguis-
tic word embedding vectors to recognize unseen attribute-
object pair. Besides, [9] compose sentences that describe
novel objects and their interactions with other objects. To
evaluate ZSL approaches, Chao et al. [3] develop a perfor-
mance metric called the Area Under Seen-Unseen accuracy
Curve. In light of this, Liu et al. [21] propose a Deep Cal-
ibration Network (DCN) to map visual features of images
and semantic representations of class prototypes to a com-
mon embedding space.
Compositional Zero-shot Learning. Unlike ZSL, Compo-
sitional Zero-Shot Learning (CZSL) entails that the model
learns to compose unseen concepts from primitive compo-
nents that have already been learned [23]. Most approaches
to CZSL learn the embedding of object-attribute pair in im-
age feature space [25], and require hundreds of training ex-
amples, while Purushwalkam et al. [36] propose task-driven
modular networks to learn the joint compatibility between
the input image and the pair by learning a representation. To
exploit rich dependency structure of different states, objects
and their compositions, Naeem et al. [26] propose the Com-
positional Graph Embedding (CGE) that learns image fea-
tures, compositional classifiers and latent representations of
visual primitives in an end-to-end manner. Compositional
Cosine Graph Embeddings (Co-CGE) [24] use the score of
unseen composition as margins in a cosine similarity-based
loss and as weights in the adjacency matrix of the graphs.
OADis [39] utilizes auxiliary networks to explicitly focus
on separating attributes and object features in the visual
space, and achieved state-of-the-art performance.

3. Compositional Attribute-Object Under-
standing with Pronouns

Previous methods (e.g. OADis [39]) apply learnable sub-
networks onto embeddings generated by language models
and the outputs of these sub-networks serve as regression
targets, as shown in Fig. 3 (a). As as those MLPs shown in
Fig. 3 (a) are not fixed, the regression targets change from
iteration to iteration. Thus, the networks from the image
part are optimized toward inconsistent targets. This incon-
sistency severely challenges the scalability of the image en-
coding network. To this end, we propose to use memory
banks that smooth the regression targets over time so they
are more consistent in each iteration, as shown in Fig. 3 (b).

We illustrate our overall system in Sec. 3.2. Pronoun
Memory Bank is introduced in Sec. 3.3. The basic visual
components are introduced in Sec. 3.4. We quantitatively
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Figure 2. System Overview: Given three images, we use pretrained image encoding backbone to extract features and utilize attribute
and object encoders to generate visual features fa, fo, f

′
a and f

′
o. The final visual embeddings are computed by feature fusion model and

attention models. After preprocessing text labels by pretrained word embedding, text features of attributes and objects are composed to
text pair features by the Text Encoder. Pronoun Memory Bank is proposed to represent text features of attributes/objects with pronouns.
Thus, vision embeddings vp, va, vo and text embeddings tp, ta, to are compatible.
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Figure 3. Comparison of OADis and our proposed methods (PMB)
from the text branch.

demonstrate that our Pronoun Memory Bank design can sig-
nificantly improve the scalability of the image branch in
Sec. 4, using a larger image encoding backbone leads to
stable performance improvements on three datasets while it
is not the case for OADis.

3.1. Task Formulation

Compositional zero-shot learning (CZSL) [25] aims to
recognize the novel compositional labels that are not ob-
served during training. This is particularly challenging
because different attributes can drastically change the vi-
sual appearance of an object, making it difficult for classi-
fiers to identify it accurately. In this task, all attribute la-
bels A and object labels O compose a label space domain
T = {(ai, oj)|ai ∈ A, oj ∈ O} which contains all pair la-
bels. Each pair label pi ∈ P is a composition of attribute
aj ∈ A and ok ∈ O. Since not all pair label makes sense,
such as flying cheese, the pair label space is a subset
of text label space P ⊂ T .

Given an image Ii corresponding to a pair label pi, the
train set is denoted by St = {(Ii, pi)|Ii ∈ It, pi ∈ Ps},
where It contains all images for training, and seen pairs
Ps is a subset of P . The target of CZSL task is to train a
model M : I → P , enabling to predict both seen pairs Ps

and unseen pairs Pu i.e., Ps ∩ Pu = ∅ and Ps ∪ Pu = P .
Following previous works [36,44], we study this problem in
the Generalized CZSL setting which has both seen Ps and
unseen Pu pairs in the validation and test sets.

3.2. System Overview

Denote that the visual embeddings of attribute, object
and pair are va, vo and vp, and text embeddings of those
are ta, to and tp respectively.

The entire architecture is presented in Fig. 2 and is com-
posed of two distinct parts separated by a compatible func-
tion. The left part corresponds to the text-based component,
whereas the right part represents the visual component. In
the text part, a single Multi Layer Perception (MLP) is em-
ployed to create pair embeddings tp, and a Pronoun Mem-
ory Bank is utilized to produce the attribute embeddings ta
and object embeddings to. In the visual part, the visual com-
ponent employs visual attribute and object encoders to gen-
erate attribute features and object features respectively. A
feature fusion model is proposed to aggregate the attribute
and object features into visual pair embeddings vp. More-
over, to ensure alignment between the output of the Pronoun
Memory Bank and the visual component, attention modules
are employed to produce the visual attribute embeddings va
and object embeddings vo.

3.3. Pronoun Memory Bank (PMB)

In this section, we introduce the pronoun concept and
the Pronoun Memory Bank to represent attribute and object
embeddings.
Extending Pronoun to Adjectives. The usage of pro-
nouns in natural language is a well-established linguis-
tic phenomenon that allows speakers to refer to a pre-
viously mentioned nouns without emphasizing it [12, 40,
43]. For example, we would say there’s something
running on the street to emphasize the attribute
running and pay little attention to what is running, and
the something is the pronoun. In this task, the represen-
tation of attributes (adj.) is similar to the that of objects
(noun). Thus, we propose extending this concept to include
adjectives. We would say there’s an interesting
dog to emphasize the object dog and pay little attention
to its attribute, and the interesting is the adjective ver-
sion of pronoun. Note that we just use an example to show
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Figure 4. Memory Bank Architecture. We propose a FIFO mem-
ory bank to implicitly represent the concept of pronouns. All text
embeddings are classified at each iteration according to attribute
and object labels. Then they are enqueued in the memory bank,
with the label of the attribute and object serving as the queue item,
and dequeue the same number of the previous features.

the concept of pronoun in natural languages, so it doesn’t
mean that the embedding of the words interesting and
something are used to represent pronoun.
Pronoun Memory Bank Architecture. We design a first-
in-first-out Memory Bank to store the pair text embeddings.
Then these embeddings could be used to represent the pro-
noun of attributes and objects as shown in Fig. 4. The mem-
ory bank in consideration has dimensions n × nm × df ,
where n denotes the number of entities in the system, nm

represents the size of the memory queue, and df is the di-
mension of each feature vector stored in the queue. Here, n
can either refer to the number of attributes (n = nattr) or
the number of objects (n = nobj).

During training, for every composed pair of text embed-
dings tp, which includes information about the jth attribute
and a random object, we update the jth queue, denoted by
Mj

a = [t1p, t
2
p, ..., t

nm
p ], to indicate the jth attribute. We

utilize a moving average of Mj
a to represent all available

objects as a pronoun. Similar to the attribute memory bank,
the object memory bank denoted by Mo, is updated in the
same way. The Pronoun Memory Bank is obtained by com-
bining Ma and Mo. The mechanism is shown in Figure
4. Thus the jth attribute feature and the kth object feature
could be represented as:

tja =
1

nm

nm∑
i=1

Mj,i
a and tko =

1

nm

nm∑
i=1

Mk,i
o (1)

Attr-Obj Pronoun Representation. As shown in Fig. 2,
from the text part, we utilize a pretrained text embed to ex-
tract the word embedding. Then an MLP is used to compose
the attribute and the object embedding, and output the pair
embedding tp. We utilize Pronoun Memory Bank to store
all pair embeddings and adopt the moving average method
to output the final embeddings of attribute-pronoun ta and
pronoun-object to. Taking the attribute-pronoun as an ex-
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Figure 5. Comparison of OADis and our proposed method (PMB)
from the image branch.

ample, obtaining a series of pair embeddings of running
dog, running cat, running human, . . . . . . , we take
the average of these embeddings to represent the attribute-
pronoun running something. In this way, tp is com-
posed of an MLP, and ta, to are obtained from the tp through
Pronoun Memory Bank. Thus the regression targets are reg-
ularized, leading to improved scalability and superior per-
formance on the larger image encoding backbone.

3.4. Visual Embedding Network Architecture

Integrating a Pronoun Memory Bank design into the
OADis [39] framework is not feasible. Applying Pro-
noun Memory Bank leads to regression target embeddings
corresponding to adjective-(pro)noun pairs. For example,
Averaging the language embeddings like running dog,
running cat and running man leads to a regression
target corresponding to running something. This is
quite different from OADis’s attribute target, which corre-
sponds to running (i.e. ta in Fig. 3 (a)). This calls for
a network architecture change to the image branch. Using
OADis’s design to extract attribute-only image feature (i.e.
va in Fig. 5 (a)) is no longer a choice naturally compatible
with the regression target running something. So, we
modify to use two separate image encoders for attribute and
object instead of the only image encoder of OADis. This
modification can be used to conveniently generate image
features corresponding to adjective-noun pairs.
Attribute and Object Encoder. We first use the second last
layer before Pooling of a pretrained ResNet [8]. Attribute
Encoder and Object Encoder share the same structure which
is a 1 × 1 convolutional layer. Input three images Ip, Ia,
and Io that corresponding to the pair label (e.g. sleeping
dog), attribute label (e.g. sleeping cat) and object la-
bel (e.g. sleeping dog). The attribute encoder gener-
ates fa, f

′

a from Ip and Ia and the object encoder generates
fo, f

′

o from Ip and Io respectively.
Feature Fusion Model. Bilinear models were first in-
troduced by [42] to separate style and content, and [20]
used Bilinear Pooling for image captioning. Inspired by
[6, 35, 42], we propose to use Feature Fusion Model based
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Figure 6. Visual Output. We adopt compact bilinear pooling
method in the Feature Fusion Model. Ψ is the Count Sketch [4]
function and FFT is fast Fourier transformation. In the image at-
tention model, we only demonstrate the attribute attention struc-
ture because the object branch is symmetric to attribute branch
and object attention has the same structure.

on Bilinear models to integrate attributes and objects of an
image, as seen in Fig. 6 (a).

Feature Fusion Model first projects the attribute features
fa and the object features fo to a lower dimensional space
(using Count Sketch [4]) and then convolving both vectors
by using element-wise product in Fast Fourier Transform
(FFT) space. The Inverse Fast Fourier Transform (FFT−1)
outputs a composed feature map fp.

fp = Φ(fa, fo) (2)

where fp, fa and fo are in the same shape of n× 7× 7, n is
the dimension of feature vector space. Φ is the function to
compute the fusion results of two matrices.

Φ =FFT−1(FFT(ϕa)⊗ FFT(ϕo))

Ψ(f, h, s) : f → ϕ
(3)

where ⊗ is the hadarmard product [10]. Denoted that Ψ is
the transform function to project fa, fo into a lower dimen-
sional space by using Count Sketch [4] and thus we get ϕa

and ϕo in the shape of n. Techonically, we initialize two
vectors h ∈ {1, ..., n}n and s ∈ {−1, 1}n, where h maps
each index i in the input f to an index j in the output ϕ and
s contains either -1 or 1 for each index.

ϕ = {ϕ(1), ϕ(2), ...ϕ(n)}

ϕ(i) =

h(j)=i∑
j

s(j)f(j)
(4)

Attribute and Object Attention. In computer vision, vi-
sual attention aims to focus on specific images or subre-
gions [1, 16, 45]. And in compositional zero-shot learning
tasks, image attributes and objects tend to attract different
attention. For example, to distinguish sleeping dog
and running dog, visual attention prefers to focus on

the different motion states than only on the object feature.
The attention module is used to extract similar features be-
tween two images, the attribute attention model structure is
shown in Fig. 6 (b). As the architecture for visual attribute
and object embedding output is symmetry, we could get the
vo by substituting fa, f

′

a for fo, f
′

o.
First, input two image features fa, f

′

a ∈ Rn×49 (reshape
n×7×7 to n×49), and compute the feature relevance with
a cosine distance.

R =
fT
1 f2

∥f1∥∥f2∥
(5)

Based on the relevance matrix R ∈ R49×49, we apply soft-
max to normalize the feature map to the attention score. The
similarity between two images could be represented as:

s(λ,R) =

d∑
i=1

eλrij∑d
j=1 e

λrij
(6)

where d = 49 is the dimension of the space of Relevance
matrix, rij is a element in R with location of the ith row
and the jth column, λ is the inverse temperature parameter
of the softmax function.

The output similarity contains rich covariance informa-
tion. Our target of this module is to output a vector contain-
ing information on the similarity. For example, assume the
input fa, f

′

a is running cat and running dog, the
output should be a vector with the same dimension as the in-
puts, and that captures the semantic meaning of running
something. Taking the attribute attention as an example,
the attention on output would be

Attna = fa · s(λ,R(fa, f
′

a)) (7)

where (·) is the matrix product, and we use MaxPooling and
MLPs to final output the visual attribute embedding va.

3.5. Compatibility Function

Compatibility Score. Following previous work [30,34,39],
we use cosine similarity to measure the final prediction for
each pair, and use cross entropy to calculate the final com-
patibility score. For visual embeddings like v ∈ Rn and text
embeddings like T ∈ Rm×n, where m is the total number
of text embeddings, we calculate the cosine similarity of the
prediction embeddings and all text pair embeddings.

C(v, T ) = cos(v, T ) =
vTT

∥v∥∥T∥
(8)

Getting the final prediction matrix, the training process is
supervised by a cross-entropy loss.

L(v, T ) = eC(v,T )∑
p∈T eC(v,p)

(9)
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Training Loss. All text embeddings tp ∈ Rn compose of
the total text embeddings T ∈ Rm×n. The main loss Lp

is computed by T and visual embeddings vp through the
compatibility function.

Lp = L(vp, T ) (10)

Embeddings with the same attribute or the same object are
regularized and optimized by visual attribute-pronoun fea-
tures va and attribute memory bank Ma, visual pronoun-
object features vo and object memory bank Mo. The loss
functions are represented as:

La = L(va,Ma)

Lo = L(vo,Mo)
(11)

The total loss is the weighted sum of the above, where
λ1, λ2 are hyperparameters. As the architecture for at-
tribute and object embedding output is symmetry, we set
λ1 = λ2 = λ, and λ is 0.25 in this paper. Additionally, we
run ablations on λ in the supplementary.

Ltotal = Lp + λ1La + λ2Lo (12)

Inference. In the validation or test process, we derive a
prediction by searching the pair label that yields the highest
cosine similarity, Given an image, using and attribute en-
coder and object encoder to generate fa and fo, we could
get the visual pair embedding vp through the feature fusion
model, the result is shown by Pred(vp).

Pred(vp) = argmax
p∈P

C(vp, T+) (13)

T+ ∈ Rm+×n contains all seen and unseen text pair labels,
where m+>m. It is worth mentioning that our model works
in the generalized Compositional Zero-Shot Learning set-
ting, all reachable classes of seen and unseen are predicted.

4. Experiment
4.1. Datasets and Metrics

Datasets. Our experiments are conducted on three datasets:
MIT-states [11], UT-Zappos [46] and VAW-CZSL [39].
MIT-states [11] contains 63440 images covering 115 at-
tributes and 245 objects. Each image is attached to an
attribute-object pair label and there are 1262 classes of pairs
in total. We use 1262 pairs/30338 images for training and
800 pairs/12995 images for testing. UT-Zappos [46] con-
tains 12 types of attributes and 16 types of objects. We use
83 pairs/22998 images as the train set and 36 pairs/2914
images as the test set. VAW-CZSL [39] is a dataset with
a much larger output space of 440 attributes and 541 ob-
jects. We use 11175 pairs/72203 images for training and
4019 pairs/10856 images for testing.

Metrics. We adopt the evaluation protocol [36] and report
the Area Under the Curve (AUC) (in %) between the accu-
racy on seen and unseen compositions with different bias
terms, which are positively relevant to the performance of
unseen pairs and negative relevant to that of seen pairs. In
addition, the best harmonic mean is reported when the bias
is balanced. Furthermore, we also present the accuracy of
attributes and objects to show the improvement through the
regularization of attribute regression and object regression.
Training Details. Our image features are extracted from
the ResNet101 [8] pre-trained on ImageNet [38]. We use
pretrained text embedding GloVe [33] to process the words
to vectors. The embed dimension for MIT-States and VAW-
CZSL datasets is 300, and for UTZappos dataset is 100.
The text encoder is an MLP of one hidden layer and the
feature shapes of the input are 600 and that of the output is
the embed dimension. We use Adam Optimizer [13] with
an initial learning rate of 3e−4 and the decay factor of 0.1.
We train our model on NVIDIA 3090 GPUs.

4.2. Quantitative Results

We evaluate our PMB method on public benchmarks
MIT-states [11], UT-Zappos [46] and VAW-CZSL [39].
Due to the utilization of Pronoun Memory Bank, the im-
age encodings of out model networks are optimized to-
wards more consistent targets. As evidenced by our ex-
periments, switching the image backbone from ResNet18
to ResNet101 hardly improves or hurts the performance of
compositional understanding under the OADis [39] frame-
work. Our model has better consistent performance and
achieves state-of-the-art result on all datasets.
MIT-States. Our PMB method shows its robustness against
considerable noise in the MIT-states dataset. It achieves a
test AUC of 7.3% and a validation AUC of 8.8%, which
is a significant improvement from the previous state-of-the-
art OADis [39] of 5.9% and 7.6% AUC on test and val-
idation set respectively as seen in Table 1. It is worth
mentioning that we have better scalability by using back-
bone ResNet101, but if we replace the backbone of OADis,
the evaluation metrics will barely improve. Overall, our
model outperforms other models on all metrics. Besides,
our model could see a slight improvement using ResNet18.
UT-Zappos. We show our results of AUC of 31.7% on the
test set and 40.7% on the validation set, which overtakes
all other models on all metrics. Besides, due to better con-
sistancy of the regression targets, we could also get better
performance using ResNet18. However, it is hard to make
much improvement since not all labels (7/36 attribute la-
bels) have appeared in the train set, so training, validation,
and test are not always highly relevant. We need to pay
attention to the over-fitting problem and balance the perfor-
mance on the validation set and test set.
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Table 1. We show results on MIT-states [11] and UT-Zappos [45]. Following [36], we use AUC in % between seen and unseen compositions
with different bias terms, along with Val, Test, attribute and object accuracy. HM is Harmonic Mean.

MIT-States UT-Zappos

Model Val@1 Test@1 HM Seen Unseen Attribute Object Val@1 Test@1 HM Seen Unseen Attribute Object

AttrOpr [27] 2.5 2.0 10.7 16.6 18.4 22.9 24.7 29.9 22.8 38.1 55.5 54.4 38.6 70.0
LabelEmbed+ [27] 3.5 2.3 11.5 16.2 21.2 25.6 27.5 35.5 22.6 37.7 53.3 58.6 40.9 69.1
TMN [36] 3.3 2.6 11.8 22.7 17.1 21.3 24.2 35.9 28.4 44.0 58.2 58.0 40.8 68.4
CompCos [24] 6.9 4.8 16.9 26.9 24.5 28.3 31.9 40.8 26.9 41.1 57.7 62.8 43.3 73.0
Symnet [18] 4.5 3.4 13.8 24.8 20.0 26.1 25.7 27.4 27.7 42.5 56.7 61.6 44.0 70.6
GraphEmb [26] 7.2 5.3 18.1 28.9 25.0 27.2 32.5 33.9 24.7 38.9 58.8 61.0 44.0 72.6

OADis [39]+ResNet18 7.6 5.9 18.9 31.1 25.6 28.4 33.2 40.8 30.0 44.4 59.5 65.5 46.5 75.5
OADis [39]+ResNet101 7.4 5.6 18.4 29.8 27.5 30.8 35.4 40.0 30.1 45.3 59.3 64.6 46.6 75.3

PMB+ResNet18 7.5 5.9 19.4 31.6 25.2 28.0 33.3 39.7 31.0 45.8 60.4 65.4 46.7 75.0
PMB+ResNet101 8.8 7.3 20.9 35.0 28.8 31.3 37.2 40.7 31.7 45.9 60.8 65.0 46.3 73.7

Old
Something

Someadj
Necklace

Ripe
Cheese

MIT-states UT-Zappos VAW-CZSL

(a) Retrieving images (b) Retrieving labels

Small Elephant

Young Elephant
Small Elephant
Tiny Elephant

Bright Lightning

Bright Lightning
dark Lightning
Cracked sky

Sliced Bread

Sliced Bread
Sliced Sandwich
Sliced Cake

Canvas Loafers

Canvas Sneakers
Canvas Loafers
Suede Sneakers

Suede Slippers

Sheepskin Slippers
Suede Slippers
Suede Boots

Satin Sandals

Satin Sandals
Satin Heals
Leather Sandals

Mounted Picture

Framed Picture
On-the-wall Picture
Hanging Picture

Tall Tree

Tall Tree
Lush Tree
Green Forest

Sitting Person

Sitting Person
Sitting Man
Sitting Woman

Ancient Church Old Toy Old Computer Old Tiger

Engraved Jewelry Thin Necklace

Moldy Cheese Ripe Cheese Sliced Sandwich Cooked Beef

Coiled Necklace Coiled Necklace

MIT-states

Figure 7. Qualitative Results: Left(a): We show good predictions for retrieving images from given labels. The first row focuses on the
attribute old, the second row focuses on the object necklace and the third row is ripe cheese. Right(b): The top-3 predictions of
our model for some examples from three datasets are shown and most of the predictions make sense. The words in black are ground truth,
colored ones are good predictions and the grey ones are wrong to ground truth.

Table 2. We show results on VAW-CZSL [39]

VAW-CZSL

Model Val@3 Test@3 HM Seen Unseen Attribute Object

AttrOpr [27] 1.4 1.4 9.1 16.4 11.7 13.7 34.9
LabelEmbed+ [27] 1.5 1.6 9.8 16.2 13.2 13.4 35.1
TMN [36] 2.2 2.3 11.9 19.9 15.4 15.9 38.3
Symnet [18] 2.3 2.3 12.2 19.1 15.8 18.6 40.9
CompCos [24] 3.1 3.2 14.2 23.9 18.0 16.9 41.9
GraphEmb [26] 2.7 2.9 13.0 23.4 16.8 16.9 40.8

OADis [39] 3.5 3.6 15.2 24.9 18.7 17.5 43.3
OADis+ResNet101 [39] 3.4 3.7 15.3 25.0 19.8 18.2 44.5

PMB+ResNet18 3.6 3.6 15.3 25.8 18.6 18.4 43.7
PMB+ResNet101 4.4 4.5 17.2 26.0 22.3 20.4 47.1

VAW-CZSL. VAW-CZSL dataset poses a significant chal-
lenge due to its large number of samples and labels. As a
result, the use of top-1 AUC as the sole evaluation metric
for this task may be too strict. In this task, we use top-3
AUC to evaluate the VAW-CZSL dataset and demonstrate
a significant improvement over previous state-of-the-art re-
sults. Specifically, our approach achieves an AUC of 4.4%
and 4.5% for the validation and test sets, respectively, com-

large clock 
ancient clock 

small clock

ancient clock 

ancient clock
old phone 

broken clock

small bear
large bear
huge bear

pressed cookie
pressed candy

pressed caramic

ruffled silk
crushed silk

ruffled dress

small animal
tiny animal

old cat

fresh eggs 
broken necklace

pressed brass

ruffled frabric
ruffled window

ruffled bag

broken necklace

small animal

ruffled fabric

Figure 8. Prediction on hard-to-identify items: Labels on top is the
ground truth, the yellow ones are the prediction of OADis and the
blue ones are the prediction of our model, bold font style indicates
the correct prediction.

pared to the previous best results of 3.4% and 3.7%. Ad-
ditionally, we observe improvements in attribute and object
accuracy, with increases from 17.5% to 20.4% for attributes
and from 43.3% to 47.1% for objects.
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4.3. Qualitative Results

To perform a qualitative evaluation of our proposed PMB
model, we present image retrieval results for a particular at-
tribute and object, as depicted in Fig. 7 (a). Additionally,
we showcase label retrieval results in Fig. 7 (b). Our find-
ings in Fig. 8 demonstrate that our model exhibits enhanced
capabilities for identifying challenging items.
Image retrieval. The examples are predicted to the labels
shown below each image as shown in Fig. 7 (a), while
the ground truth is marked on the left. The label old
something is assigned to different objects with the at-
tribute old, indicating that the model captures subtle vari-
ations in the meaning of attributes. The correct answers
demonstrate that despite differences in appearance, shape,
and color, the model correctly predicted the object as a
necklace. However, the incorrect answer jewelry sug-
gests that semantic similarity between object labels can con-
fuse the model. In the third row, although only one image
was predicted correctly, the other predicted labels were still
semantically meaningful. These examples could illustrate
that our PMB model works efficiently and robustly.
Label retrieval. In Fig. 7 (b), we present the results of
retrieving the top-3 predicted labels corresponding to a set
of given images. The labels are grouped into different cat-
egories based on their attributes such as color, shape, size,
illuminance, and objects such as scenes, people, and ani-
mals. The predicted labels are reasonable and make sense
for most of the images. However, one failed example is
the mounted picture from VAW-CZSL, where the pre-
dicted labels are framed picture, which share a sim-
ilar meaning with the ground truth. Additionally, the pre-
dicted labels on-the-wall picture and hanging
picture are also semantically related to the input image.
Thus, while there was an error in predicting the exact label,
the predicted labels are still meaningful.
Prediction on challenging items. In this section, we
present a set of images that pose a significant challenge for
human observers to identify accurately, as illustrated in Fig.
8. However, our model was able to accurately predict the
correct labels for these images, whereas the OADis [39]
model struggled to perform well. This finding highlights
our model’s superior capability and robustness when deal-
ing with difficult-to-identify items.
Discussion. Thanks to the PMB design, our regression
target is averaged over many different old objects during
training and thus can well grasp the concept of old. Dur-
ing test time, old objects, buildings and animals are all
recalled. As seen in figure 7, given an example of attribute
old, it is obvious that an old building is featured of
its poor color and uneven edges, and an old computer is
yellow rather than discoloration. These two features share
the same attribute old but would show a different appear-
ance. Different from items, finding age information on an-

Table 3. Results with different feature fusion methods.

Fusion Methods MIT-States UT-Zappos VAW-CZSL

Test@1 HM Test@1 HM Test@3 HM

Element-wise Sum+FC 7.1 20.1 30.9 44.8 4.0 16.7
Element-wise Product+FC 7.0 20.0 30.4 45.0 4.0 17.2
Concatenation+FC 7.0 20.4 30.1 43.2 4.1 16.5
Bilinear Pooling 7.3 20.9 31.7 45.9 4.5 17.2

Table 4. Results on different sizes of Memory Bank

Size MIT-States UT-Zappos VAW-CZSL

Test@1 HM Test@1 HM Test@3 HM

10 7.0 21.0 29.0 44.0 4.4 16.8
1024 7.3 20.9 31.7 45.9 4.5 17.2
2048 6.9 20.8 30.2 43.7 4.3 13.7

Momentum [7] 7.1 21.2 30.9 44.5 4.4 16.5

imals e.g. old tiger is far more complicated than we
could barely distinguish by our eyes. Learning with these
averaged objects makes it possible to gain more semantic
information of the attribute combined with different objects.
Objects recognition is improved in the same way.

4.4. Ablations

In this section, we ablate our PMB model with respect to
different feature fusion methods and the size of the Pronoun
Memory Bank.
Feature Fusion Methods. We compare the performance of
non-bilinear and bilinear pooling methods in Tab. 3. For
the main feature fusion model after Attribute and Object
Encoders, we compare our Feature Fusion Model (bilinear
pooling) with element-wise sum, element-wise product and
concatenation with a fully connected layer.
Memory Bank Size. Tab. 4 presents the results of varying
the size of the pronoun memory bank. Using an excessively
large memory bank can lead to a decline in performance due
to the inclusion of outdated information and increased stor-
age requirements. Conversely, a memory bank that is too
small is insufficient to represent the concept of pronouns ad-
equately. Therefore, an appropriate range of memory bank
sizes falls between 10 and 1024. Besides, we conducted ex-
periments based on MoCo [7]. However, the results indicate
that MoCo did not lead to any improvement in this task.

5. Conclusion

In this work, we propose a new framework for compo-
sitional zero-shot learning. We regularize the output of the
text encoder as attribute-object pair embeddings, and use
Pronoun Memory Bank to generate attribute and object em-
beddings by introducing pronoun concepts. The Pronoun
Memory Bank makes the image encoders learn more con-
sistent regression targets. Thus, our proposed method has
good performance and better scalability on the larger im-
age encoding backbone. Our experimental results demon-
strate that the PMB framework achieves state-of-the-art per-
formance on all three datasets.
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